Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Front Cell Dev Biol ; 11: 1188905, 2023.
Article in English | MEDLINE | ID: covidwho-20244928

ABSTRACT

Induced pluripotent stem cells (iPSCs) have entered an unprecedented state of development since they were first generated. They have played a critical role in disease modeling, drug discovery, and cell replacement therapy, and have contributed to the evolution of disciplines such as cell biology, pathophysiology of diseases, and regenerative medicine. Organoids, the stem cell-derived 3D culture systems that mimic the structure and function of organs in vitro, have been widely used in developmental research, disease modeling, and drug screening. Recent advances in combining iPSCs with 3D organoids are facilitating further applications of iPSCs in disease research. Organoids derived from embryonic stem cells, iPSCs, and multi-tissue stem/progenitor cells can replicate the processes of developmental differentiation, homeostatic self-renewal, and regeneration due to tissue damage, offering the potential to unravel the regulatory mechanisms of development and regeneration, and elucidate the pathophysiological processes involved in disease mechanisms. Herein, we have summarized the latest research on the production scheme of organ-specific iPSC-derived organoids, the contribution of these organoids in the treatment of various organ-related diseases, in particular their contribution to COVID-19 treatment, and have discussed the unresolved challenges and shortcomings of these models.

2.
Front Cardiovasc Med ; 10: 1068390, 2023.
Article in English | MEDLINE | ID: covidwho-20242573

ABSTRACT

A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.

3.
Front Cell Infect Microbiol ; 13: 1155252, 2023.
Article in English | MEDLINE | ID: covidwho-20240964

Subject(s)
Organoids , Technology , Humans
4.
Organ Transplantation ; 13(2):169-175, 2022.
Article in Chinese | EMBASE | ID: covidwho-2327398

ABSTRACT

In recent years, organoid technology has become one of the major technological breakthroughs in biomedical field. As miniature organs constructed by three-dimensional culture of tissue stem cells in vitro, organoids are highly consistent with the source tissues in terms of tissue structures, cell types and functions, which serve as an ideal model for biomedical basic research, drug research and development and clinical precision medicine, and show important potential value in regenerative medicine. Organ transplantation is one of the most effective approaches to treat organ failure. However, the source of donor organs is currently limited, which could not meet the patients' needs. Identifying suitable graft substitutes is the key to breaking through the predicament. Organoids could be derived from the autologous tissues of patients. Multiple studies have demonstrated that organoids possess potent transplantation and repairing capabilities and may effectively avert the risk of immune rejection and tumorigenicity, etc. In this article, the development process and main application directions of organoid technology were summarized, and the application prospect and challenges of organoids in organ transplantation were reviewed and predicted.Copyright © 2022 Journal of Zhongshan University. All right reserved.

5.
Topics in Antiviral Medicine ; 31(2):110-111, 2023.
Article in English | EMBASE | ID: covidwho-2319670

ABSTRACT

Background: The continuous evolution of SARS-CoV-2 in the diverse immune landscape (natural, vaccine, hybrid) is giving rise to novel immune escape mutations. So far, the resulting new variants (BA.1, BA.2, BA.2.12.1) were observed to cause mild infections, however, BA.5 infections are associated with an increased risk of hospitalization.1 Therefore it is essential to investigate the pathogenesis of BA.5. Method(s): Here we compared the pathogenicity of Pre-Omicron (B.1.351) and Omicron (BA.1, BA.2.12.1, and BA.5) variants in wild-type C57BL/6J mice and K18-hACE2 mice. The virus replication kinetics was also studied in human Calu3, pulmonary alveolar type 2 (AT2) cells, and airway organoids (HAO). Cell-to-cell spread of virus was measured by syncytia formation assay and immunohistochemistry (IHC) of infected lungs. Result(s): In the results, infection in C57BL/6J mice showed severe weight loss ( >15%) for B.1.351 infected mice and moderate ( >5%) for BA.5 infected. C57BL/6J mice showed higher virus replication of B.1.351 followed by BA.5, BA.1, and BA.2.12.1. At the peak of virus replication (2 days) plaque-forming units from lung extract of BA.5 infected mice were two, and three logs higher compared to BA.1 and BA.2.12.1 respectively. BA.5 infection was lethal to 80% of infected K18-hACE2 mice, whereas the mice looked normal after infection with BA.1 and BA.2.12.1. BA.5 infected mice showed high virus replication in brain tissue. Surprisingly the syncytia formation assay and IHC for BA.5 was comparable to that of B.1.351, indicating the higher cell-to-cell spread of BA.5 and B.1.351 compared to BA.1 and BA.2.12.1, which is one of the measures of pathogenicity. Calu3 and HAO showed the same trend of virus replication as was observed in-vivo experiments however AT2 cells were found to be resistant to BA.5 replication. Conclusion(s): These results suggest that the BA.5 variant (lineage) of Omicron has the potential to regain the pathogenicity as it shows increased virulence compared to other Omicron sub-variants. Lethal infection of BA.5 in K18-hACE2 mice may be attributed to catastrophic encephalitis and increased cell-to-cell spread.

6.
Journal of Investigative Medicine ; 71(1):53, 2023.
Article in English | EMBASE | ID: covidwho-2316453

ABSTRACT

Purpose of Study: COVID pneumonia caused by SARS-CoV-2 can result in a depletion of surfactant & lung injury, which resembles neonatal respiratory distress syndrome. Exogenous surfactant has shown promise as a therapeutic option in intubated hospitalized patients. Our preliminary data in human lung organoids (LOs) with a deficiency of surfactant protein B (SP-B) showed an increased viral load compared to normal LOs. Single cell RNA sequencing (scRNAseq) revealed that SP-B-deficient cells showed increased viral entry genes (ACE2 receptor) & dysregulated inflammatory markers emanating from the lung cells themselves. Our objective was to determine: (1) cell-specific transcriptional differences between normal & SP-B deficient human lung cells after infection with SARS-CoV-2 and (2) a therapeutic role of SP-B protein & surfactant in COVID-19 pneumonia. Methods Used: We used normal and SP-B mutant (homozygous, frameshift, loss of function mutation p.Pro133GlnfsTer95, previously known as 121ins2) human induced pluripotent stem cells (hiPSC) and differentiated them into 3D proximal lung organoids. The organoids were infected with the delta variant of SARS-CoV-2 for 24 hours at an MOI of 1. Infected and uninfected organoids were fixed in trizol in triplicate and underwent processing for bulk RNA sequencing. We tested for differentially expressed genes using the program DEseq. We also plated normal iPSC derived lung organoids as a monolayer and pre-treated them with 1mg/ml of Poractant alfa or 5 uM of recombinant SP-B protein. The delta strain of SARS-CoV-2 was added to the 96 wells at an MOI of 0.1 for one hour with shaking, then an overlay with DMEM/CMC/FBS was added and left on for 23 hours. The plate was fixed and stained for nucleocapsid (NC) protein. Summary of Results: Bioinformatic analysis of the bulk RNA sequencing data showed an increase in the multiple cytokines and chemokines in the SP-B mutant LOs compared to control. We also saw differential gene expression patterns in the SP-B mutant LOs including a reduction in SFTPC, FOXA2, and NKX2-1 and an increase in IL1A, VEGFA, PPARG and SMAD3. In the exogenous surfactant experiments, there was a decrease in total expression of viral NC in the Poractant alfa & rSP-B-treated cells compared to SARS-CoV-2 infection alone (p<0.001). Conclusion(s): Surfactant modulates the viral load of SARS-CoV-2 infection in the human lung. Deficiency in SP-B results in the dysregulation of the lung epithelial inflammatory signaling pathways resulting in worsening infections.

7.
Clinical Neurosurgery ; 69(Supplement 1):140, 2023.
Article in English | EMBASE | ID: covidwho-2314736

ABSTRACT

INTRODUCTION: Glioblastoma (GBM) is the most common and deadliest primary brain tumor, characterized by chemoradiation resistance and an immunosuppressive tumor microenvironment (TME). SARS-CoV-2, the COVID-19 virus, produces a significant proinflammatory response and a spectrum of clinical presentations after central nervous system infection. METHOD(S): Patient-derived GBM tissue, primary cell lines, and organoids were analyzed with immunohistochemistry and pixel-line intensity quantification. Data from tumor-bulk and single-cell transcriptomics served to describe the cell-specific expression of SARS-CoV-2 receptors in GBM and its association with the immune TME phenotype. Normal brain and iPSC-derived organoids served as controls. RESULT(S): We demonstrate that patient-derivedGBMtissue and cell cultures express SARS-CoV2 entry factors such as ACE2, TMPRSS2, and NRP1. NRP1 expression was higher in GBM than in normal brains (p<0.05), where it plays a crucial role in SARS-CoV-2 infection. NRP1 was expressed in a cell-type and phenotype-specific manner and correlated with TME infiltration of immunosuppressive cells: M2 macrophages (r = 0.229), regulatory T cells (r = 0.459), NK cells (r = -0.346), and endothelial cells (r = 0.288) (p < 0.05). Furthermore, gene ontology enrichment analysis showed that leukocyte migration and chemotaxis are among the top 5 biological functions mediated by NRP1 (p < 0.05). We found our GBM organoids recapitulate tumoral expression of SARSCoV- 2 entry factors, which varies based on distance from surface as surrogate of TME oxygenation (p < 0.05). CONCLUSION(S): GBM cancer cells and immune TME cells express SARS-CoV-2 entry factors. Glioblastoma organoids recapitulate this expression and allow for currently undergoing studies analyzing the effect of SARS-CoV-2 infection in GBM. Our findings suggest that SARSCoV- 2 could potentially target GBM, opening the door to future studies evaluating SARS-CoV-2-driven immune modulation.

8.
Journal of Cystic Fibrosis ; 21(Supplement 2):S258, 2022.
Article in English | EMBASE | ID: covidwho-2313250

ABSTRACT

Background: Air-liquid interface (ALI) and organoid culture are key techniques for differentiating human airway epithelial cells (HAECs). The efficiency and robustness of these assays often depends on the quality of primary-isolated cells, but primary cell isolation workflows, with which the user controls the choice of isolation method, cell culture medium, and culture format, may reduce reproducibility. Therefore, an optimized, standardized workflow can enhance and support isolation of epithelial cells from diseased donors with potentially rare cystic fibrosis (CF) mutations or particularly sensitive cell populations. We have developed a standardized workflow for isolation and culture of freshly derived airway epithelial cells. Method(s): Briefly, HAECs isolated from primary tissue were expanded in PneumaCult-Ex Plus Medium for 1 week and then seeded into Corning Transwell inserts and expanded until confluency. The cells were then differentiated in PneumaCult-ALI Medium for at least 4 weeks. To assess differentiation efficiency in ALI culture, the cells were immunostained to detect Muc5AC, acetylated tubulin, and ZO-1 to identify goblet cells, ciliated cells, and apical tight junctions, respectively, aswell as SARS-CoV-2 cell entry targets angiotensin-converting enzyme 2 and transmembrane serine protease 2. Ion transport and barrier function of the ALI culturesand response to CF transmembrane conductance regulator (CFTR) correctors were also measured. In addition, freshly derived HAECs were seeded into Corning Matrigel domes in the presence of PneumaCult Airway Organoid Seeding Medium. Oneweek later, the mediumwas changed to PneumaCult Airway Organoid Differentiation Medium and maintained for an additional 3 weeks to promote cell differentiation. These airway organoids were then treated with CFTR corrector VX-809 for 24 hours, followed by 6-hour treatment with amiloride, forskolin, and genistein to induce organoid swelling. Result(s): Our results demonstrate that ALI cultures derived from CF donors displayed partial rescue of CFTR across multiple passages after treatment with VX-809. Airway organoids were found to express functional CFTR, as evidenced by forskolin treatment, which induced a 64 +/- 14% (n = 1 donor) greater organoid area than in vehicle control-treated airway organoids. Airway organoids derived from CF donors displayed a loss of forskolininduced swelling, which could be partially re-established with VX-809 treatment (29 +/- 9%, n = 3). Conclusion(s): In summary, the PneumaCult workflow supports robust, efficient culture of primary-airway epithelial cells that can be used as physiologically relevant models suitable for CF research, CFTR corrector screening, and studying airway biology.Copyright © 2022, European Cystic Fibrosis Society. All rights reserved

9.
Microbiol Spectr ; : e0309822, 2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2311156

ABSTRACT

Bats are a natural reservoir for many viruses and are considered to play an important role in the interspecies transmission of viruses. To analyze the susceptibility of bat airway cells to infection by viruses of other mammalian species, we developed an airway organoid culture model derived from airways of Carollia perspicillata. Application of specific antibodies for fluorescent staining indicated that the cell composition of organoids resembled those of bat trachea and lungs as determined by immunohistochemistry. Infection studies indicated that Carollia perspicillata bat airway organoids (AOs) from the trachea or the lung are highly susceptible to infection by two different porcine influenza A viruses. The bat AOs were also used to develop an air-liquid interface (ALI) culture system of filter-grown epithelial cells. Infection of these cells showed the same characteristics, including lower virulence and enhanced replication and release of the H1N1/2006 virus compared to infection with H3N2/2007. These observations agreed with the results obtained by infection of porcine ALI cultures with these two virus strains. Interestingly, lectin staining indicated that bat airway cells only contain a small amount of alpha 2,6-linked sialic acid, the preferred receptor determinant for mammalian influenza A viruses. In contrast, large amounts of alpha 2,3-linked sialic acid, the preferred receptor determinant for avian influenza viruses, are present in bat airway epithelial cells. Therefore, bat airway cells may be susceptible not only to mammalian but also to avian influenza viruses. Our culture models, which can be extended to other parts of the airways and to other species, provide a promising tool to analyze virus infectivity and the transmission of viruses both from bats to other species and from other species to bats. IMPORTANCE We developed an organoid culture system derived from the airways of the bat species Carollia perspicillata. Using this cell system, we showed that the airway epithelium of these bats is highly susceptible to infection by influenza viruses of other mammalian species and thus is not a barrier for interspecies transmission. These organoids provide an almost unlimited supply of airway epithelial cells that can be used to generate well-differentiated epithelial cells and perform infection studies. The establishment of the organoid model required only three animals, and can be extended to other epithelia (nose, intestine) as well as to other species (bat and other animal species). Therefore, organoids promise to be a valuable tool for future zoonosis research on the interspecies transmission of viruses (e.g., bat → intermediate host → human).

10.
Stem Cell Res Ther ; 14(1): 114, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2290740

ABSTRACT

Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges. In this report, we review the recent 3D in vitro lung models used in COVID-19 infection and drug screening studies and highlight the most common types of natural and synthetic polymers used to generate 3D lung models.


Subject(s)
COVID-19 , Polymers , Animals , Humans , Cell Culture Techniques/methods , Organoids , Lung
11.
Exp Neurol ; 365: 114409, 2023 07.
Article in English | MEDLINE | ID: covidwho-2291951

ABSTRACT

Microphysiological systems (MPS) are 2D or 3D multicellular constructs able to mimic tissue microenvironments. The latest models encompass a range of techniques, including co-culturing of various cell types, utilization of scaffolds and extracellular matrix materials, perfusion systems, 3D culture methods, 3D bioprinting, organ-on-a-chip technology, and examination of tissue structures. Several human brain 3D cultures or brain MPS (BMPS) have emerged in the last decade. These organoids or spheroids are 3D culture systems derived from induced pluripotent cells or embryonic stem cells that contain neuronal and glial populations and recapitulate structural and physiological aspects of the human brain. BMPS have been introduced recently in the study and modeling of neuroinfectious diseases and have proven to be useful in establishing neurotropism of viral infections, cell-pathogen interactions needed for infection, assessing cytopathological effects, genomic and proteomic profiles, and screening therapeutic compounds. Here we review the different methodologies of organoids used in neuroinfectious diseases including spheroids, guided and unguided protocols as well as microglia and blood-brain barrier containing models, their specific applications, and limitations. The review provides an overview of the models existing for specific infections including Zika, Dengue, JC virus, Japanese encephalitis, measles, herpes, SARS-CoV2, and influenza viruses among others, and provide useful concepts in the modeling of disease and antiviral agent screening.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Zika Virus Infection , Zika Virus , Humans , Microphysiological Systems , Proteomics , RNA, Viral , COVID-19/pathology , SARS-CoV-2 , Brain , Zika Virus Infection/pathology , Induced Pluripotent Stem Cells/physiology
12.
Stem Cell Reports ; 17(9): 1959-1975, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2305537

ABSTRACT

In vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids. The small size and large surface-to-volume ratio of MOSs enable various applications including quantitative assessment of nutrient dependence, pathogen-host interaction for anti-viral drug screening, and a rapid potency assay for chimeric antigen receptor (CAR)-T therapy. An automated MOS imaging pipeline combined with machine learning overcomes plating variation, distinguishes tumorspheres from stroma, differentiates cytostatic versus cytotoxic drug effects, and captures resistant clones and heterogeneity in drug response. This pipeline is capable of robust assessments of drug response at individual-tumorsphere resolution and provides a rapid and high-throughput therapeutic profiling platform for precision medicine.


Subject(s)
Antineoplastic Agents , Organoids , Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Microfluidics , Precision Medicine
13.
Microbiology Research ; 13(4):788-808, 2022.
Article in English | Scopus | ID: covidwho-2282947

ABSTRACT

After two years into the pandemic of the coronavirus disease 2019 (COVID-19), it remains unclear how the host RNA interference (RNAi) pathway and host miRNAs regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and impact the development of COVID-19. In this study, we profiled small RNAs in SARS-CoV-2-infected human ACE2-expressing HEK293T cells and observed dysregulated host small RNA groups, including specific host miRNAs that are altered in response to SARS-CoV-2 infection. By comparing dysregulated miRNAs in different SARS-CoV-2-infected samples, we identified miRNA-210-3p, miRNA-30-5p, and miR-146a/b as key host miRNAs that may be involved in SARS-CoV-2 infection. Furthermore, by comparing virally derived small RNAs (vsmRNAs) in different SARS-CoV-2-infected samples, we observed multiple hot spots in the viral genome that are prone to generating vsmRNAs, and their biogenesis can be dependent on the antiviral isoform of Dicer. Moreover, we investigated the biogenesis of a recently identified SARS-CoV-2 viral miRNA encoded by ORF7a and found that it is differentially expressed in different infected cell lines or in the same cell line with different viral doses. Our results demonstrate the involvement of both host small RNAs and vsmRNAs in SARS-CoV-2 infection and identify these small RNAs as potential targets for anti-COVID-19 therapeutic development. © 2022 by the authors.

14.
Life Sci ; 319: 121506, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2260551

ABSTRACT

Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine. We discuss current applications of intestinal organoids with an emphasis on disease modeling. In particular, we point out recent studies on SARS-CoV-2 infection in human intestinal organoids. We also discuss the less explored application of intestinal organoids in epigenetics by highlighting the role of epigenetic modifications in intestinal development, homeostasis, and diseases, and subsequently the power of organoids in mirroring the regulatory role of epigenetic mechanisms in these conditions and introducing novel predictive/diagnostic biomarkers. Finally, we propose 3D organoid models to evaluate the effects of novel epigenetic drugs (epi-drugs) on the treatment of GI diseases where epigenetic mechanisms play a key role in disease development and progression, particularly in colorectal cancer treatment and epigenetically acquired drug resistance.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Humans , COVID-19/genetics , SARS-CoV-2 , Intestines , Organoids , Intestinal Mucosa
15.
Exp Neurol ; 363: 114379, 2023 05.
Article in English | MEDLINE | ID: covidwho-2265676

ABSTRACT

COVID-19 causes neurological damage, systemic inflammation, and immune cell abnormalities. COVID-19-induced neurological impairment may be caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which directly infects cells of the central nervous system (CNS) and exerts toxic effects. Furthermore, SARS-CoV-2 mutations occur constantly, and it is not well understood how the infectivity of the virus to cells of the CNS changes as the virus mutates. Few studies have examined whether the infectivity of cells of CNS - neural stem/progenitor cells (NS/PCs), neurons, astrocytes, and microglia - varies among SARS-CoV-2 mutant strains. In this study, therefore, we investigated whether SARS-CoV-2 mutations increase infectivity to CNS cells, including microglia. Since it was essential to demonstrate the infectivity of the virus to CNS cells in vitro using human cells, we generated cortical neurons, astrocytes, and microglia from human induced pluripotent stem cells (hiPSCs). We added pseudotyped lentiviruses of SARS-CoV-2 to each type of cells, and then we examined their infectivity. We prepared three pseudotyped lentiviruses expressing the S protein of the original strain (the first SARS-CoV-2 discovered in the world), the Delta variant, and the Omicron variant on their envelopes and analyzed differences of their ability to infect CNS cells. We also generated brain organoids and investigated the infectivity of each virus. The viruses did not infect cortical neurons, astrocytes, or NS/PCs, but microglia were infected by the original, Delta, and Omicron pseudotyped viruses. In addition, DPP4 and CD147, potential core receptors of SARS-CoV-2, were highly expressed in the infected microglia, while DPP4 expression was deficient in cortical neurons, astrocytes, and NS/PCs. Our results suggest that DPP4, which is also a receptor for Middle East respiratory syndrome-coronavirus (MERS-CoV), may play an essential role in the CNS. Our study is applicable to the validation of the infectivity of viruses that cause various infectious diseases in CNS cells, which are difficult to sample from humans.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , Microglia , SARS-CoV-2 , Dipeptidyl Peptidase 4 , Neurons
16.
Biomater Res ; 27(1): 18, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2264938

ABSTRACT

BACKGROUND: Natural products can serve as one of the alternatives, exhibiting high potential for the treatment and prevention of COVID-19, caused by SARS-CoV-2. Herein, we report a screening platform to test the antiviral efficacy of a natural product library against SARS-CoV-2 and verify their activity using lung organoids. METHODS: Since SARS-CoV-2 is classified as a risk group 3 pathogen, the drug screening assay must be performed in a biosafety level 3 (BSL-3) laboratory. To circumvent this limitation, pseudotyped viruses (PVs) have been developed as replacements for the live SARS-CoV-2. We developed PVs containing spikes from Delta and Omicron variants of SARS-CoV-2 and improved the infection in an angiotensin-converting enzyme 2 (ACE2)-dependent manner. Human induced pluripotent stem cells (hiPSCs) derived lung organoids were generated to test the SARS-CoV-2 therapeutic efficacy of natural products. RESULTS: Flavonoids from our natural product library had strong antiviral activity against the Delta- or Omicron-spike-containing PVs without affecting cell viability. We aimed to develop strategies to discover the dual function of either inhibiting infection at the beginning of the infection cycle or reducing spike stability following SARS-CoV-2 infection. When lung cells are already infected with the virus, the active flavonoids induced the degradation of the spike protein and exerted anti-inflammatory effects. Further experiments confirmed that the active flavonoids had strong antiviral activity in lung organoid models. CONCLUSION: This screening platform will open new paths by providing a promising standard system for discovering novel drug leads against SARS-CoV-2 and help develop promising candidates for clinical investigation as potential therapeutics for COVID-19.

17.
Cell Rep Med ; 3(12): 100849, 2022 12 20.
Article in English | MEDLINE | ID: covidwho-2278940

ABSTRACT

Direct in vivo investigation of human placenta trophoblast's susceptibility to SARS-CoV-2 is challenging. Here we report that human trophoblast stem cells (hTSCs) and their derivatives are susceptible to SARS-CoV-2 infection, which reveals heterogeneity in hTSC cultures. Early syncytiotrophoblasts (eSTBs) generated from hTSCs have enriched transcriptomic features of peri-implantation trophoblasts, express high levels of angiotensin-converting enzyme 2 (ACE2), and are productively infected by SARS-CoV-2 and its Delta and Omicron variants to produce virions. Antiviral drugs suppress SARS-CoV-2 replication in eSTBs and antagonize the virus-induced blockage of STB maturation. Although less susceptible to SARS-CoV-2 infection, trophoblast organoids originating from hTSCs show detectable viral replication reminiscent of the uncommon placental infection. These findings implicate possible risk of COVID-19 infection in peri-implantation embryos, which may go unnoticed. Stem cell-derived human trophoblasts such as eSTBs can potentially provide unlimited amounts of normal and genome-edited cells and facilitate coronavirus research and antiviral discovery.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Humans , Female , Pregnancy , SARS-CoV-2 , Trophoblasts , Placenta , Peptidyl-Dipeptidase A/genetics , Antiviral Agents/pharmacology
18.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2280802

ABSTRACT

Bovine coronavirus (BCoV) is one of the major viral pathogens of cattle, responsible for economic losses and causing a substantial impact on animal welfare. Several in vitro 2D models have been used to investigate BCoV infection and its pathogenesis. However, 3D enteroids are likely to be a better model with which to investigate host-pathogen interactions. This study established bovine enteroids as an in vitro replication system for BCoV, and we compared the expression of selected genes during the BCoV infection of the enteroids with the expression previously described in HCT-8 cells. The enteroids were successfully established from bovine ileum and permissive to BCoV, as shown by a seven-fold increase in viral RNA after 72 h. Immunostaining of differentiation markers showed a mixed population of differentiated cells. Gene expression ratios at 72 h showed that pro-inflammatory responses such as IL-8 and IL-1A remained unchanged in response to BCoV infection. Expression of other immune genes, including CXCL-3, MMP13, and TNF-α, was significantly downregulated. This study shows that the bovine enteroids had a differentiated cell population and were permissive to BCoV. Further studies are necessary for a comparative analysis to determine whether enteroids are suitable in vitro models to study host responses during BCoV infection.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Animals , Cattle , Coronavirus, Bovine/genetics , Ileum
19.
Virol J ; 20(1): 37, 2023 02 25.
Article in English | MEDLINE | ID: covidwho-2252692

ABSTRACT

Since December 2019, various types of strategies have been applied due to the emergent need to investigate the biology and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to discover a functional treatment. Different disease modeling systems, such as mini-organ technology, have been used to improve our understanding of SARS-CoV-2 physiology and pathology. During the past 2 years, regenerative medicine research has shown the supportive role of organoid modeling in controlling coronavirus disease 2019 (COVID-19) through optimal drug and therapeutic approach improvement. Here, we overview some efforts that have been made to study SARS-CoV-2 by mimicking COVID-19 using stem cells. In addition, we summarize a perspective of drug development in COVID-19 treatment via organoid-based studies.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , Organoids
20.
J Nanobiotechnology ; 20(1): 511, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2254845

ABSTRACT

Inherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.


Subject(s)
Nanoparticles , Retinal Diseases , Humans , CRISPR-Cas Systems/genetics , Prospective Studies , Retinal Diseases/genetics , Retinal Diseases/therapy , Retina , Genetic Therapy
SELECTION OF CITATIONS
SEARCH DETAIL